Abstract

Liquids attain a metastable state without crystallizing by cooling rapidly to a given temperature below the melting point. With increasing supercooling, the nucleation rate would show an increase based on the prediction of the classical nucleation theory. It is generally thought that the nucleation rate will reach the maximum upon approaching the glass transition temperature, Tg, for glass-forming liquids. We report that there exists a supercooled region above Tg in which the crystallization has actually been severely suppressed. Our molecular dynamics simulations show that the growth of embryos in the supercooled Cu60Zr40 melt is subjected to a strong anisotropic stress associated with the dynamic heterogeneity. Its long-range effect drives the embryo to grow into a ramified morphology so that the interface energy dominates over the embryo growth, leading to the suppression of nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.