Abstract

As a crucial parameter in the design and analysis of laser performances, stimulated emission (SE) cross-section is currently considered to be dependent on several factors, such as temperatures and eigen-polarizations for anisotropic crystals. In contrast with these factors, impact of propagating directions upon SE cross-section has garnered less attention. In this paper, to investigate the SE cross-section in arbitrary propagating directions, fluorescence spectra for the transition in Nd:YVO4 are measured in different propagating directions. Based on Fuchtbauer–Ladenburg equation model, the propagating direction-dependent SE cross-section spectra in Nd:YVO4 are obtained for the first time, to our best knowledge. A novel concept of anisotropic SE cross-section is proposed to interpret the propagating direction-dependent effect. The experiment results reveal that for an arbitrary propagating direction the SE cross-section of e light around 1064 nm can be expressed as a superposition from two principle axial propagating directions with a weight of plane projection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.