Abstract

One of the main objectives of spintronics is to provide power-efficient switching of magnetic layers through electrical means, and in order to achieve this goal, alternate material systems with enhanced spin-orbit torque (SOT) must be engineered. In this work we provide evidence of anisotropy in the SOT and spin Hall effect (SHE) in epitaxial $\mathrm{Pt}$(110) grown on $\mathrm{Mg}\mathrm{O}$(110) single-crystal substrates, and find that the spin Hall angle and the dampinglike torque are 20% larger when current is applied along the [001] crystallographic direction as compared to [$1\overline{1}0$], leading to an equivalent reduction in switching current density along [001]. The anisotropy in SOT is attributed to the bulk contributions of the SHE in the $\mathrm{Pt}$ layer through its anisotropic resistance in this specific orientation. Measurements additionally suggest that the Rashba-Edelstein effect at the $\mathrm{Pt}$/$\mathrm{Ti}$ interface due to the $\mathrm{Pt}$(110) surface has a non-negligible effect on the spin diffusion length and SOT. By providing experimental evidence of the crystal orientation dependence of SOT-induced magnetization switching, this work helps to establish a path for energy-efficient magnetization switching through the alignment of devices with crystallographic directions of enhanced SOT generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.