Abstract

The interchange and ballooning stability of general anisotropic pressure plasma equilibria in a dipolar magnetic field are investigated. Starting with the Kruskal–Oberman form of the energy principle and using a Schwarz inequality, a fluid form of the anisotropic pressure energy principle is derived, which, after appropriate minimization, gives an interchange stability condition and an integro-differential ballooning equation. These results are applied to the case of an anisotropic pressure equilibrium having the perpendicular pressure equal to the parallel pressure times a constant and, in particular, to a model point dipole equilibrium. It is found that the model equilibrium is interchange stable for all plasma betas = (plasma pressure/magnetic pressure) and ballooning stable for all betas up to some critical value. The interesting planetary case of “tied” field lines is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.