Abstract
We study the continuum limit in 2+1 dimensions of nanoscale anisotropic diffusion processes on crystal surfaces relaxing to become flat below roughening. Our main result is a continuum law for the surface flux in terms of a new continuum-scale tensor mobility. The starting point is the Burton, Cabrera and Frank (BCF) theory, which offers a discrete scheme for atomic steps whose motion drives surface evolution. Our derivation is based on the separation of local space variables into fast and slow. The model includes: (i) anisotropic diffusion of adsorbed atoms (adatoms) on terraces separating steps; (ii) diffusion of atoms along step edges; and (iii) attachment–detachment of atoms at step edges. We derive a parabolic fourth-order nonlinear partial differential equation (PDE) for the continuum surface height profile. An ingredient of this PDE is the surface mobility for the adatom flux, which is a nontrivial extension of the tensor mobility for isotropic terrace diffusion derived previously by Margetis and Kohn (2006 Multisci. Model. Simul. 5 729–58). Approximate, separable solutions of the PDE are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.