Abstract

An anisotropic plastic constitutive model for fiber-reinforced composite material, is developed, which is simple and efficient to be implemented into computer program for a predictive analysis procedure of composite laminates. An anisotropic initial yield criterion, as well as work-hardening model and subsequent yield surface are established that includes the effects of different yield strengths in each material direction, and between tension and compression. The current model is implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS). The accuracy and efficiency of the anisotropic plastic constitutive model and the computer program PACS are verified by solving a number of various fiber-reinforced composite laminates. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model. Keywords: Anisotropic Plasticity, Fiber Composite, Predictive Finite Element Analysis

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.