Abstract

We recently reported a cationic lipid-based vector of siRNA, termed siRNA lipoplex that was very efficient in specific gene silencing, both in cell culture and in mouse disease models. To be more efficient, this vector included the addition of a plasmid DNA as an anionic “cargo.” Although this plasmid DNA was devoid of any eukaryotic expression cassette, we decided to replace it by an anionic polymer that would be more acceptable for clinical applications. We identified seven anionic polymers, regarded as non-toxic, biodegradable, of various characteristics and nature. The addition of polymers to siRNA lipoplexes led to the formation of particles with similar characteristics to crude siRNA lipoplexes, decreased cellular toxicity and variable in vitro gene silencing efficiency depending on the type of polymer used. Upon i.v. injection in mice, siRNA lipoplexes prepared with the best polymer, polyglutamate, led to significantly increased recovery of siRNA in liver and lung compared with lipoplexes without polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.