Abstract

A combined study of electrochemical measurements, intervalence charge transfer analysis, and DFT calculations suggests that the degree of urea-mediated electronic coupling between two cyclometalated ruthenium sites is enhanced by the coordination of urea with Br- or Cl-via hydrogen bonding. In contrast, the redox waves of the diruthenium complex become highly irreversible in the presence of relatively strong basic anions such as H2PO4-, F-, or OAc-. This work demonstrates that the anion-urea interaction can be employed to regulate the electronic coupling and electron transfer between redox-active sites, suggesting the potential applications of the urea-functionalized diruthenium complex in anion sensing and stimuli-responsive molecular electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.