Abstract

The oxygen reduction reaction (ORR) processes in alkaline media that occur on a family of electrocatalyst materials derived from a Co containing precursor and a polypyrrole/C composite material (PPy/C) are investigated here. The effects of Co loading and heat treatment temperature on the CoPPy/C materials are revealed through structural evaluations and electrochemical studies. Principle component analysis (PCA), a mutivariant analysis (MVA) technique, is used to establish structure-to-property correlations for the CoPPy/C materials. In all cases, pyrolysis leads to formation of a composite catalyst material, featuring Co nanoparticles coated with Co oxides and Co2+ species associated with N−C moieties that originate from the polypyrrole structures. Based on these correlations, we are able to propose an ORR mechanism that occurs on this class of non-platinum based fuel cell cathode catalysts. The correlations suggest the presence of a dual site functionality where O2 is initially reduced at a Co2+ containi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.