Abstract
Phospholemman (PLM), a 72-amino acid membrane protein with a single transmembrane domain, forms taurine-selective ion channels in lipid bilayers. Because taurine forms zwitterions, a taurine-selective channel might have binding sites for both anions and cations. Here we show that PLM channels indeed allow fluxes of both cations and anions, making instantaneous and voltage-dependent transitions among conformations with drastically different ion selectivity characteristics. This surprising and novel ion channel behavior offers a molecular explanation for selective taurine flux across cell membranes and may explain why molecules in the phospholemman family can induce cation- or anion-selective conductances when expressed in Xenopus oocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.