Abstract

The paper reports main results of a comprehensive study of the vibrational spectrum of ketene computed using second-order perturbation theory treatment based on quartic, cubic and semidiagonal quartic force constants. Two different models – a homogeneous model using the same density functionals and basis functions for the harmonic calculations and anharmonic corrections and a hybrid model in which the two parts of the calculation are conducted using different density functionals and basis sets – have been employed in the present calculations. Different DFT and CCSD methods and DZ and TZ extended basis sets involving diffuse and polarization functions have been used to calculate optimized and vibrationally averaged geometrical parameters, the harmonic and anharmonic vibrational frequencies and the spectroscopic constants such as anharmonicity constants, rotational constants, rotation–vibration coupling constants, Nielsen's centrifugal distortion constants and Coriolis coupling constants. Homogeneous model is found to be superior to the hybrid model in several respects. Difficulties in the hybrid model may arise due to one of the following reasons: (a) the basic requirement that the geometry optimization and frequency calculations must be done at the same level of theory to have valid frequencies is not met in the hybrid model; (b) the molecular structure gets reoptimized at the low level for anharmonic corrections; (c) in addition, the perturbation could also diverge for the above reasons, particularly for the very low, very anharmonic terms where the harmonic approximation is not close enough to make the perturbation work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.