Abstract

Based on a mathematical lemma related to the Vandermonde determinant and two theorems derived from the first law of black hole thermodynamics, we investigate the angular momentum independence of the entropy sum as well as the entropy product of general rotating Kaluza-Klein black holes in higher dimensions. We show that for both non-charged rotating Kaluza-Klein black holes and non-charged rotating Kaluza-Klein-AdS black holes, the angular momentum of the black holes will not be present in entropy sum relation in dimensions $d\geq4$, while the independence of angular momentum of the entropy product holds provided that the black holes possess at least one zero rotation parameter $a_j$ = 0 in higher dimensions $d\geq5$, which means that the cosmological constant does not affect the angular momentum-free property of entropy sum and entropy product under the circumstances that charge $\delta=0$. For the reason that the entropy relations of charged rotating Kaluza-Klein black holes as well as the non-charged rotating Kaluza-Klein black holes in asymptotically flat spacetime act the same way, it is found that the charge has no effect in the angular momentum-independence of entropy sum and product in asymptotically flat spactime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.