Abstract
Angular resolved scanning transmission electron microscopy is an important tool for investigating the properties of materials. However, several recent studies have observed appreciable discrepancies in the angular scattering distribution between experiment and theory. In this paper we discuss a general approach to low-loss inelastic scattering which, when incorporated in the simulations, resolves this problem and also closely reproduces experimental data taken over an extended angular range. We also explore the role of ionic bonding, temperature factors, amorphous layers on the surfaces of the specimen, and static displacements of atoms on the angular scattering distribution. The incorporation of low-loss inelastic scattering in simulations will improve the quantitative usefulness of techniques such as low-angle annular dark-field imaging and position-averaged convergent beam electron diffraction, especially for thicker specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.