Abstract
Plasmonic arrays are grating-like structures able to couple an incoming electromagnetic field into either localized or propagating surface plasmonic modes. A triangular array of elliptical holes in a gold layer were realized resorting to displacement Talbot lithography. Scanning electron microscopy was used to evaluate the geometrical features and finite time domain simulations were performed to verify the consistency of the design. The optical response was characterized by angle-resolved reflectance and transmittance measurements. The results demonstrate the good quality and uniformity of the array. Furthermore, the study on the dependence of the optical response on both the hexagonal lattice and the elliptical hole-defined symmetry properties was conducted allowing the distinction of their effects on both the localized and propagating plasmonic modes. The results indicate that the localized component of the plasmonic modes is mainly affected by the elliptical shape, while the propagating part is influenced by the hexagonal lattice symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.