Abstract

Consider two bonded functionally graded piezoelectric material (FGPM) with finite height. Each material contains an arbitrary oriented crack. The material properties are assumed in exponential forms in the direction normal to the interface. The crack surface condition is assumed to be electrically impermeable or permeable. Using the Fourier transform technique, the problem can be reduced to a system of singular integral equations, which are then solved numerically by applying the Gauss–Chebyshev integration formula to obtain the stress intensity factors at the crack tips. Numerical calculations are carried out to obtain the energy density factor S and the energy release rate G. In impermeable case, the energy release rate has been shown to be negative as the electric loads are applied. The positive definite characteristic of the energy density factor makes it possible for predicting the fracture behavior of the cracked structure. The influences of the non-homogeneous parameters and crack orientation on the energy density factors at the crack tips are discussed in detail. The results show that the energy density factor at the crack tip will be increased when the crack tip is located within the softer material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.