Abstract
Simple SummaryGlioblastoma (GB) is a highly aggressive brain tumor characterized by poor prognosis and high rate of recurrence in response to conventional treatments consisting of tumor resection and radiochemotherapy (RCT). The reasons for this therapeutic failure are mainly due to the complexity of GB biology and its environment. GB progression is highly dependent on its vascularization and inflammatory status. Besides, evidence showed that RCT also induces vascular change and inflammation. In GB patients, Angiopoietin-2 (Ang2), biomarker of poor prognosis is a crucial angiogenic factor also involved in inflammation. Our aim was to clarify the role of Ang2 in RCT-induced changes in the GB environment. To this end, we generated Ang2-overexpressing GL261 cells and characterized tumor progression, as well as inflammation and vascularization, in response to RCT. We showed that Ang2 delays tumor recurrence and makes a lasting improvement in animal survival when combined with conventional RCT.(1) We wanted to assess the impact of Ang2 in RCT-induced changes in the environment of glioblastoma. (2) The effect of Ang2 overexpression in tumor cells was studied in the GL261 syngeneic immunocompetent model of GB in response to fractionated RCT. (3) We showed that RCT combined with Ang2 led to tumor clearance for the GL261-Ang2 group by acting on the tumor cells as well as on both vascular and immune compartments. (4) In vitro, Ang2 overexpression in GL261 cells exposed to RCT promoted senescence and induced robust genomic instability, leading to mitotic death. (5) Coculture experiments of GL261-Ang2 cells with RAW 264.7 cells resulted in a significant increase in macrophage migration, which was abrogated by the addition of soluble Tie2 receptor. (6) Together, these preclinical results showed that, combined with RCT, Ang2 acted in an autocrine manner by increasing GB cell senescence and in a paracrine manner by acting on the innate immune system while modulating the vascular tumor compartment. On this preclinical model, we found that an ectopic expression of Ang2 combined with RCT impedes tumor recurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.