Abstract

Angiogenesis, the formation of new blood vessels from existing ones, is an important event in several biological processes, including wound healing. It plays a key role in determining the final functionality and integration of any implanted medical device. In addition, angiogenesis is a required event for organ development and has been accepted as a rate-limiting step in engineering tissue replacements. Besides these regenerative processes, uncontrolled angiogenesis is also involved in a number of pathologies, including tumor growth and metastases. Like angiogenesis, biomaterials also play a role in wound healing after medical device implantation and in tissue engineering. Interactions between the device biomaterials and host tissue will factor into the final device integration. Additionally, tissue-engineering strategies utilize biomaterials to a great extent because the paradigm of tissue engineering involves the use of cells, growth factors and scaffolding matrices in order to regenerate or replace tissue. Since almost all tissues are three-dimensional, the biomaterial scaffold plays an integral role in the paradigm. This review will emphasize the influence of biomaterials on angiogenesis as it applies to medical device implantation, tissue engineering and therapies for pathological angiogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.