Abstract

Acetaminophen (APAP)-induced hepatic damage is prevalent in western countries. The present study aimed to investigate the hepatoprotective effects of Angelica sinensis polysaccharide (ASP), an active constituent derived from a water extract of Angelica sinensis, in rats exposed to an APAP overdose. The mechanisms underlying the activity of this compound were also considered. Specifically, serum and hepatic biochemical parameters including alanine aminotransferase (ALT), aspartate transaminase (AST), glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) were evaluated, and key proteins involved in hepatic apoptosis, including cleaved caspase-3, Bax and Bcl-2 were quantified. In vivo, H&E staining reveals that ASP reduces the degeneration of hepatocytes and the amount of cytoplasmic vacuolation in rats exposed to an overdose of APAP. ASP markedly alleviated liver injury via an increase in GSH levels and the inhibition of hepatic apoptosis. In vitro, ASP significantly elevated the survival rate of rat primary hepatocytes exposed to an overdose of APAP. The beneficial effect might be, at least in part, due to the amelioration of lipid peroxidation and oxidative stress, along with the inhibition of apoptosis. Taken together, our findings reveal that ASP has potential to be used as a hepatoprotective agent for the management of APAP-induced liver injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.