Abstract
Atrial natriuretic factor (ANF) binding sites have been recently demonstrated to be present in exocrine pancreas by an in vitro autoradiographic approach. An autoradiographic study was carried out to identify the exocrine cells containing ANF binding sites and to monitor the fate of 125I-labeled ANF in acinar cells after removal of pancreas at specific time intervals (1-30 min) after intravenous administration. At the light microscopic level, silver grains were found over acinar and centroacinar cells. Concomitant injection of an excess of unlabeled ANF inhibited the binding of labeled peptide by approximately 60%. At the electron microscopic level, the time-course study in acinar cells has revealed that of the cell compartments examined, plasma membrane, Golgi apparatus, mitochondria, and zymogen granules, the nucleus had distinct labeling patterns. Plasma membrane was maximally labeled 1 and 2 min after injection with 125I-ANF. Golgi apparatus was significantly labeled from 2 to 30 min after injection, mitochondria from 1 to 30 min after injection, zymogen granules at 1 and 15 min, and the nucleus only at 30 min. The lysosomal compartment was not labeled during the 30-min observation period. These results suggest that after binding to the plasma membrane, ANF is rapidly internalized and distributed to the intracellular organelles as a function of time. Labeling of the zymogen granules suggests that they may bind ANF and that the atrial peptide may be secreted by acinar cells. The significance of association of radioactivity with mitochondria and nuclei remains to be elucidated but may represent intracellular sites of action of ANF complementary to those on plasma membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.