Abstract

In this paper, a malware classification model has been proposed for detecting malware samples in the Android environment. The proposed model is based on converting some files from the source of the Android applications into grayscale images. Some image-based local features and global features, including four different types of local features and three different types of global features, have been extracted from the constructed grayscale image datasets and used for training the proposed model. To the best of our knowledge, this type of features is used for the first time in the Android malware detection domain. Moreover, the bag of visual words algorithm has been used to construct one feature vector from the descriptors of the local feature extracted from each image. The extracted local and global features have been used for training multiple machine learning classifiers including Random forest, k-nearest neighbors, Decision Tree, Bagging, AdaBoost and Gradient Boost. The proposed method obtained a very high classification accuracy reached 98.75% with a typical computational time does not exceed 0.018 s for each sample. The results of the proposed model outperformed the results of all compared state-of-art models in term of both classification accuracy and computational time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.