Abstract

Gonadal androgens exert a wide variety of effects on several neuromuscular systems, including controlling the developmental fate of motoneurons and neuromuscular synapses and promoting the growth of adult dendrites and axons. Paramount in understanding the molecular mechanisms behind androgen action is determining where androgen acts; does androgen act directly or indirectly on cells to change their fate and function? One step toward answering this question has been to determine which cells express androgen receptors (ARs). Motoneurons and skeletal muscles both have ARs and are, therefore, potential sites of androgen action. Recent evidence indicates that the sciatic nerve in rats also contains AR mRNA (Magnaghi et al. [1999] Brain Res. Mol. Brain Res. 70:36-44), although which cell type expresses ARs remains unanswered. In this study, we explored the question of which cell populations in the rat sciatic nerve express ARs. Using immunocytochemistry and reverse transcriptase-PCR, we confirmed the presence of AR protein and mRNA in sciatic nerve from adult rats and found a sex difference, favoring males, in the number of cell nuclei immunopositive for AR. This difference was not due to a sex difference in the overall number of cell nuclei. We also found a difference favoring males in AR mRNA, evidence also suggesting that AR expression is higher in males than in females. Results from double-immmunolabeling experiments in sciatic nerve from adult males suggest that, within the endoneurial compartment, endoneurial fibroblasts stain prominently for AR, with some endothelial cells also AR(+). Although Schwann cells showed light AR immunostaining, this staining is apparently nonspecific. We conclude that cells within peripheral nerve have ARs and may, therefore, mediate some of the effects of androgens on neuromuscular systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.