Abstract

Unconventional high-temperature superconductivity in MgB2:La0:65Sr0:35MnO3 (MgB:LSMO) nanocomposite has been found recently [V. N. Krivoruchko and V. Yu. Tarenkov, Phys. Rev. B 86, 10502 (2012)]. In this report, the symmetry of the nanocomposite superconducting order parameter and plausible pairing mechanisms have been studied by the point-contact Andreev-reflection (PCAR) spectroscopy. To clarify the experimental results obtained, we consider a model of a ferromagnetic superconductor, which assumes a coexistence of itinerant ferromagnetism and mixed-parity superconductivity. The Balian–Werthamer state, with quasiparticle gap topology of the same form as that of the ordinary s- wave state, fits the experimental data reasonably well. Utilizing the extended Eliashberg formalizm, we calculated the contribution of MgB2 in the total composite's conductivity and estimated the magnitude of the electron–phonon effects originated from MgB2 in I–V characteristics of the composite at above-gap energies. It was found that distinctive features observed in the PC spectra of the MgB:LSMO samples and conventionally attributed to the electron–phonon interaction cannot be related to the MgB2 phonons. It is argued that the detected singularities may be a manifestation of the electron-spectrum renormalizations due to strong magnetoelastic (magnon–phonon) interaction in LSMO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.