Abstract

The phenomenon of the Anderson localization of waves in elastic systems is studied. We analyze this phenomenon in two di erent sets of systems: disordered linear chains of harmonic oscillators and disordered rods which oscillate with torsional waves. The rst set is analyzed numerically whereas the second one is studied both experimentally and theoretically. In particular, we discuss the localization properties of the waves as a function of the frequency. In doing that we have used the inverse participation ratio, which is related to the localization length. We nd that the normal modes localize exponentially according to the Anderson theory. In the elastic systems, the localization length decreases with frequency. This behavior is in contrast with what happens in analogous quantum mechanical systems, for which the localization length grows with energy. This di erence is explained by means of the properties of the re ection coe cient of a single scatterer in each case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.