Abstract

Anchor link prediction exacerbates the risk of privacy leakage via the de-anonymization of social network data. Embedding-based methods for anchor link prediction are limited by the excessive similarity of the associated nodes in a latent feature space and the variation between latent feature spaces caused by the semantics of different networks. In this paper, we propose a novel method which reduces the impact of semantic discrepancies between different networks in the latent feature space. The proposed method consists of two phases. First, graph embedding focuses on the network structural roles of nodes and increases the distinction between the associated nodes in the embedding space. Second, a federated adversarial learning framework which performs graph embedding on each social network and an adversarial learning model on the server according to the observable anchor links is used to associate independent graph embedding approaches on different social networks. The combination of distinction enhancement and the association of graph embedding approaches alleviates variance between the latent feature spaces caused by the semantics of different social networks. Extensive experiments on real social networks demonstrate that the proposed method significantly outperforms the state-of-the-art methods in terms of both precision and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.