Abstract

Several recent reports discuss the role of joint nerves in arthritis. Many of these are based on studies in the rat. The aim of this study is to examine the anatomy of the rat knee joint, in search for a primary articular nerve, and to analyze the fibre composition of that nerve. The results show that the structure of the joint differs in some respects from the human knee. At the upper end of the bony patella a cartilaginous patella extends proximally, forming the anterior wall of the suprapatellar bursa. Distinct collateral ligaments are integrated in the joint capsule. The extensor digitorum longus muscle bridges the knee joint, originating from the lateral femoral epicondyle. The well-developed menisci contain pyramid-shaped ossicles. The cruciate ligaments are arranged like in the human knee. A large posterior (PAN) and a small medial (MAN) articular nerve can be identified. The PAN is composed of some 400 axons, about 80% of which are unmyelinated. All myelinated fibres are sensory. They present a unimodal size spectrum with a size range of 1-8 microns, and a predominance of small fibres. Specific denervations indicate that about 1/3 of the unmyelinated axons represent afferents, and some 2/3 are sympathetic efferents. Interestingly, neonatal capsaicin treatment did not influence the number of unmyelinated PAN axons. The functional significance of the numerous unmyelinated sympathetic and sensory PAN axons in the normal knee joint remains to be elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.