Abstract

Physiological studies have demonstrated a subcortical origin for orientation selectivity and the orientation columns of the primary visual cortex. However, there are no anatomical data showing how subcortical cells contribute to this important property. Optical imaging, combined with 1,1′-dioctadecyl-3,3,3,3′-tetramethylin-docarbocyanine perchlolate (DiI) and biocytin retrograde tracing, reveals that relay cells projecting to a single orientation column representing the horizontal meridian were clustered within 300 μm in the dorsal lateral geniculate nucleus (LGN). Interestingly, some labeled cells were located on a line parallel to an iso-elevation line in the LGN. Thus, according to the quantitative projection of the visual field to the LGN (J. Comp. Neurol. 143 (1971) 101), their receptive fields must distribute horizontally in alignment in the visual field providing the first anatomical evidence for Hubel and Wiesel's model of simple cell receptive fields (J. Physiol. 160 (1962) 106).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.