Abstract
Paeonia suffruticosa 'Shima Nishiki' is a very precious double-color cultivar because of its distinctive and colorful flowers. However, our understanding of the underlying mechanisms of its double-color formation is limited. The present study investigated the soluble sugar content, cell sap pH value and anatomical structure, anthocyanin composition and content and expression patterns of genes related to anthocyanin biosynthesis in the red and pink petals of the 'Shima Nishiki' cultivar. Here, we found that soluble sugar content, cell sap pH and the shape of outer epidermal cells were not the key factors that determine double-color formation. Five different anthocyanins were detected in both the red and pink petals, and the pelargonidin-3,5-di-O-glucoside (Pg3G5G) and pelargonidin-3-O-glucoside (Pg3G) contents in the red petals were significantly higher than those in the pink petals at every developmental stage. In addition, these gene expression patterns suggested that the significant differential expression of the dihydroflavonol 4-reductase gene (PsDFR) gene might play a key role in double-color formation. These results will provide a valuable resource for further studies unraveling the underlying genetic mechanisms of double-color formation in P. suffruticosa 'Shima Nishiki'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.