Abstract

Exploring and understanding large text and social network data sets is of increasing interest across multiple fields, in computer science, social science, history, medicine, and more. This talk will present an overview of recent work using probabilistic latent variable models to analyze such data. Latent variable models have a long tradition in data analysis and typically hypothesize the existence of simple unobserved phenomena to explain relatively complex observed data. In the past decade there has been substantial work on extending the scope of these approaches from relatively small simple data sets to much more complex text and network data. We will discuss the basic concepts behind these developments, reviewing key ideas, recent advances, and open issues. In addition we will highlight common ideas that lie beneath the surface of different approaches including links (for example) to work in matrix factorization. The concluding part of the talk will focus more specifically on recent work with temporal social networks, specifically data in the form of time-stamped events between nodes (such as emails exchanged among individuals over time).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.