Abstract
Time-resolved structural studies on biomolecular function are coming of age. Focus has shifted from studies on 'systems of opportunities' to a more problem-oriented approach, addressing significant questions in biology and chemistry. An important step in this direction has been the use of physical and chemical trapping methods to capture and then freeze reaction intermediates in crystals. Subsequent monochromatic data collection at cryogenic temperatures can produce high resolution structures of otherwise elusive intermediates. The combination of diffraction methods with spectroscopic techniques provides a means to directly correlate electronic transitions with structural transitions in the sample, eliminating much of the guesswork from experiments. Studies on cytochrome P450, isopenicillin N synthase, cytochrome cd1 nitrite reductase, copper amine oxidase and bacteriorhodopsin were selected as examples, and the results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.