Abstract
Deep neural networks (DNN) are highly effective in a number of tasks related to machine learning across different domains. It is quite challenging to apply the information gained to textual data because of its graph representation structure. This article applies innovative graph structures and protection techniques to secure wireless systems and mobile computing applications. We develop an Intrusion Detection System (IDS) with DNN and Support Vector Machine (SVM) to identify adversarial inversion attacks in the network system. It employs both normal and abnormal adversaries. It constantly generates signatures, creates attack signatures, and refreshes the IDS signature repository. In conclusion, the assessment indicators, including latency rates and throughput, are used to evaluate the effectiveness and efficiency of the recommended framework with Random Forest. The results of the proposed model (SVM with DNN) based on adversarial inversion attacks were better and more efficient than traditional models, with a detection rate of 93.67% and 95.34% concerning latency rate and throughput. This article also compares the proposed model (SVM with DNN) accuracy with other classifiers and the accuracy comparison for feature datasets of 90.3% and 90%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.