Abstract

Physics-based analytical threshold voltage model for cylindrical surrounding-gate MOSFET with electrically induced source/drain extensions is presented. The effect of inversion carriers on the channel’s potential is considered in presented model. Using this analytical model, the characteristics of EJ-CSG are investigated in terms of surface potential and electric field distribution, threshold voltage roll-off, and DIBL. Results show that the application of electrically induced S/D extensions to the cylindrical surrounding-gate MOSFET will successfully suppress the hot-carrier effects, threshold voltage roll-off, and DIBL. It is also revealed that a moderate side-gate bias voltage, a small gate oxide thickness, and a small silicon channel radius are needed to improve device characteristics. The derived analytical model is verified by its good agreement with the three-dimensional numerical device simulator ISE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.