Abstract
Yttria stabilized zirconia is a versatile ceramic material. It can be used for structural components or as a solid electrolyte. Its properties (such as high toughness) are strongly affected by the microstructure. In partially stabilized zirconia, the high toughness is mainly due to the toughening effect of a tetragonal (t) to monoclinic (m) phase transformation in the vicinity of a crack. Retention of tetragonal zirconia at room temperature is important for fabricating transformation toughened materials. To completely retain tetragonal zirconia at room temperature the grain size of the material must be less than a critical size. In yttria stabilized zirconia this critical grain size depends on the yttria concentration. Grain growth of yttria stabilized zirconia is also influenced by the amount of yttria in the grains. These previous studies, however, have focused on the behavior of materials with minimal glassy grain boundary phases. In contrast, in commercial polycrystalline zirconia often a significant amount of glassy grain boundary phase is present. This current research seeks to elucidate the effects of these grain boundary phases on the grain growth in yttria stabilized zirconia ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings, annual meeting, Electron Microscopy Society of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.