Abstract
We propose an analytical model to compute the potential distribution in gate underlap double-gate symmetric MOS transistors in the subthreshold condition Ggs < Vth . Gate underlap increases the effective channel length, which results in reducing the short-channel effect and, hence, relaxing the constraint on silicon body thickness. We use the proposed model to obtain suitable gate underlap length and silicon thickness for iso subthreshold slope and drain-induced-barrier lowering. Gate fringing field, modulating the potential in gate underlapped regions, is modeled using a conformal mapping technique. Extensive simulations were carried out to confirm the validity of our model to gate lengths ~20 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.