Abstract
Friction material, as the main component in a bearing support, allows frictionless behavior between the two connected structures. Previous studies on friction material considered polytetrafluoroethylene (PTFE) and attempted to analyze the resulting friction behavior balance. However, aging PTFE loses its frictionless performances, because PTFE is crushed, causing it to tear, or the lubricant is removed. The performances of the friction material should thus be maintained to preserve the performance of structures. To overcome these issues, this study applies a ceramic friction material owing to its advantages of high strength, low friction, and low deformation. The frictional behavior is investigated on a full-scale model using Finite Element Analysis (FEA) according to the edge type of the ceramic friction material. The main design variables include four edge types, namely, general, camber, round and taper types. The results confirm that the modified edge types (camber, round and taper type) reduced the stress and deformation which, in turn, improved the friction behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.