Abstract

An analytical methodology based on asymmetric flow field flow fractionation (AF4) hyphenated to inductively coupled plasma mass spectrometry (ICP-MS) has been developed to study gold nanoparticles (AuNPs) in cell culture medium (Dulbecco's Modified Eagle Medium, DMEM, containing 10% fetal bovine serum, FBS, and antibiotics) used for in vitro toxicological studies. AF4-ICP-MS separation of AuNPs was performed using a regenerated cellulose membrane (molecular weight cut-off, MWCO, of 10 kDa). The carrier composition and the AF4 separation program were optimized. Under the optimum conditions, AuNPs of different types, i.e. phosphate buffered saline (PBS) and citrate stabilized, and sizes (10, 30 and 40 nm), without and with cell culture medium could be separated. The developed method allowed to detect transformations in AuNPs and dissolved gold species (Au3+) induced by this medium, such as an increase in the hydrodynamic volume and oxidation. Centrifugal ultrafiltration (CU), transmission electron microscopy (TEM) and Ultraviolet–visible (UV–vis) absorption spectrophotometry have been used as complementary techniques to study these processes. This information is of major interest to have a correct interpretation of the in vitro toxicological studies of NPs, which are more and more demanded due to the increasing concerns about the safe use of these materials and their impacts. This work demonstrates the potential of hyphenated techniques based on AF4 to achieve this relevant information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.