Abstract

This paper is concerned with two-dimensional stagnation-point steady flow of an incompressible viscous fluid towards a stretching sheet whose velocity is proportional to the distance from the slit. The governing system of partial differential equations is first transformed into a system of dimensionless ordinary differential equations. Analytical solutions of the velocity distribution and dimensionless temperature profiles are obtained for different ratios of free stream velocity and stretching velocity, Prandtl number, Eckert number and dimensionality index in series forms using homotopy analysis method(HAM). It is shown that a boundary layer is formed when the free stream velocity exceeds the stretching velocity, and an inverted boundary layer is formed when the free stream velocity is less than the stretching velocity. Graphs are presented to show the effects of different parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.