Abstract

Recently, we generated the evolution equations of the parton distribution functions (PDF) usually used in the hadrons phenomenology using the stochastic modeling of the non-equilibrium statistical mechanics in the momentum space. The evolution equations obtained from stochastic modeling are the same as the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations, but are obtained by a more simplistic mathematical procedure based on the non-equilibrium statistical mechanics and the theory of Markov processes. In this paper, we analytically solve the parton evolution equation for the non-singlet quark distribution function in the small-x (the longitudinal momentum fraction) region through the Kramers-Moyal expansion of the master equation. Finally, we compare the cutoff dependent non-singlet quark distribution function obtained from the analytical solution by considering the strong ordering and the angular ordering constraints with the ordinary non-singlet quark distribution function produced by the MMHT2014 group. In general, we show that our results at the small x and moderate Q2 (the energy scale) are in good agreement with the results of the MMHT2014 group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.