Abstract

In this article, based on the nonlocal elasticity theory of Eringen, dynamic characteristics of a double-FGM viscoelastic nanoplates-system subjected to temperature change with considering surface effects (surface elasticity, tension and density) is studied. Two Kirchhoff nanoplates are coupled by an internal Kelvin–Voigt viscoelastic medium and also are limited to the external Pasternak elastic foundation. The material properties of the simply supported functionally graded nanoplates are assumed to follow power law distribution in the thickness direction. The governing equations of motion for three cases (out-of-phase vibration, in-phase vibration and one nanoplate fixed) are derived from Hamilton's principle. The analytical approach is employed to determine explicit closed-form expression for complex natural frequencies of the system. Numerical results are presented to show variations of the frequency of double-FGM viscoelastic nanoplates corresponding to various values of the nonlocal parameter, temperature change, power law index, aspect ratio and transverse and shear stiffness coefficients of the Pasternak elastic foundation. Moreover, influence of higher order modes, viscoelastic structural damping and damping coefficient of the viscoelastic medium on vibration characteristics are investigated. Numerical results show that natural frequency is greatly influenced by surface elastic modulus and residual surface stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.