Abstract

AbstractA piecewise linear parametric uniaxial stress-strain approach has been used to obtain the closed form nonlinear moment curvature response on the basis of strain compatibility in bending for epoxy resin materials. The stress-strain curves, consisting of a bilinear ascending curve followed by strain softening and constant plastic flow in tension and compression, are described by two main parameters, with an additional five nondimensional tensile and seven nondimensional compressive parameters. The main parameters are the modulus of elasticity and strain at the proportional elastic limit point in tension. Parametric studies show that ultimate tensile stress and compressive yield stresses and tension and compression flow stresses have the highest effects on flexural load carrying capacity. Moment curvature equations, in conjunction with softening localization and static equilibrium conditions, were used to simulate the flexural load-deflection response of a beam under three-point bending (3PB) conditi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.