Abstract

In a loss-of-coolant accident, the pressure suppression pool of a boiling water reactor swells as a steam/air mixture is expelled from the drywell into the pool and large gas bubbles are formed beneath the surface. Many tests have been performed to quantify pool swell loads, but analytical methods have been limited in their ability to provide accurate loading estimates. With advancement of numerical methods, it is now feasible to numerically simulate the pool swell process. A finite difference solution algorithm is used to solve the transient imcompressible equations for the liquid flow field. Boundary conditions at the fluid-gas interface are determined using a simplified gas flow model. The program is used to simulate several pool swell tests: comparison of the simulation with test data shows good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.