Abstract
In time-distance helioseismology, the time signals (Doppler shifts) at two points on the solar surface, separated by a fixed angular distance are cross-correlated, and this leads to a wave packet signal. Accurately measuring the travel times of these wave packets is crucial for inferring the sub-surface properties in the Sun. The observed signal is quite noisy, and to improve the signal-to-noise ratio and make the cross-correlation more robust, the temporal oscillation signal is phase-speed filtered at the two points in order to select waves that travel a fixed horizontal distance. Hence a new formula to estimate the travel times is derived, in the presence of a phase speed filter, and it includes both the radial and horizontal component of the oscillation displacement signal. It generalizes the previously used Gabor wavelet that was derived without a phase speed filter and included only the radial component of the displacement. This is important since it will be consistent with the observed cross-correlation that is computed using a phase speed filter, and also it accounts for both the components of the displacement. The new formula depends on the location of the two points on the solar surface that are being cross correlated and accounts for the travel time shifts at different locations on the solar surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.