Abstract

In this study, we used a continuum model based on contact mechanics to understand the mechanics of merozoite invasion into human erythrocytes. This model allows us to evaluate the indentation force and work as well as the contact pressure between the merozoite and erythrocyte for an early stage of invasion (γ = 10%). The model predicted an indentation force of 1.3e -11N and an indentation work of 1e -18J. The present analytical model can be considered as a useful tool not only for investigations in mechanobiology and biomechanics but also to explore novel therapeutic targets for malaria and other parasite infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.