Abstract
A simple analytical model of GaAs MESFET's is proposed. The model is based on the assumption that the current saturation in GaAs MESFET's is related to the stationary Gunn domain formation at the drain side of the gate rather than to a pinchoff of the conducting channel under the gate. The saturation current, channel conductance, transconductance, charge under the gate, gate-to-source and drain-togate capacitances, cutoff frequency, characteristic switching time, power-delay product, and breakdown voltage are calculated in the frame of this model. The results are verified by two-dimensional computer calculations. They agree well with the results of the computer analysis and experimental data for a 1-µm gate GaAs MESFET. It is shown that a stray gate-to-drain and gate-to-source capacitance sets up a limitation of a gate length which must be larger than or about 0.1 µm for a GaAs MESFET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.