Abstract

A closed-form analytical model has been developed to estimate the effect of a nonuniform surface charge distribution on the potential of mean force between two plates or two spherical colloidal particles. This model is an extension for randomly charged surfaces of the well-known Hogg−Healy−Fuerstenau model. The surface charge distribution is random, and we characterize this by defining (1) N equal-area regions on the surfaces, (2) an average surface potential (〈ζ〉), and (3) a standard deviation of surface potential (σζ) among the regions. The model predicts that the standard deviation of the potential of mean force (σΦ) at any gap distance is approximately proportional to σζ/ . The practicality of the model derives from the fact that σζ/ is experimentally measurable. Charge nonuniformity provides one explanation for why classical colloidal stability theory often fails. In addition, since regions with a low charge density tend to be more hydrophobic, charge nonuniformity might allow strong hydrophobic inte...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.