Abstract

An analytical model for planar tube hydroforming based on deformation theory has been developed. This analytical model can be used to predict hydroformed shape, corner fill, wall thinning, and forming pressure. As the model is based on a mechanistic approach with bending effects included, local strain and stress distribution across the wall thickness can be determined. This includes strain and stress distributions for the outer layer, inside layer, and middle layer. The model is validated using finite element analysis and tube hydroforming experiments on irregular triangular, irregular quadrilateral, and pentagonal hydroformed shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.