Abstract

Foam metals with micro pores own excellent thermal performance, however, poor heat conductive ability of most heat-transfer fluids restricts further heat transfer improvement. Combination of foam metal and nanofluid with highly conductive nanoparticles is a promising solution. Convective thermal characteristics of nanofluids in porous foams are theoretically investigated in this work. Effects of Brownian motion and thermophoretic diffusion of nanoparticles in the base fluid on thermal performance are considered. The nanoparticle and the base-fluid are considered to be in thermal equilibrium and the temperature difference between the nanofluid and foam ligaments is especially considered. Compared with the base-fluid flow in a duct, the velocity distribution for the nanofluid flow in a porous foam is more uniform with a decreased dimensionless temperature. The pressure drop of the nanofluid increases with an increase in the concentration of the nanoparticles. By employing foam metals and nanofluid, the cross-sectional temperature becomes closer to the wall temperature. Simultaneously, notable difference between solid and fluid temperatures can be observed, revealing the LTNE effect of the nanofluid on the porous foam. It is found that the Nusselt number first increases and then decreases with an increase in nanoparticle concentration. Furthermore, the Nusselt number decreases with an increase in the foam porosity. It is found that the thermal performance of a nanofluid in a plain tube is different from that in the foam metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.