Abstract

Abstract Room temperature phosphorescence (RTP) lifetime measurements and spectra of different concentrations of Erythrosine B immobilized on anion exchangers and non-ionic resins have been employed to unveil mechanistic aspects of the RTP of immobilized Erythrosine B. The existence of a definite number of RTP decaying components in some experimental conditions has been confirmed. The effects of humidified argon and air on RTP lifetimes and the changes in luminescence intensities were used to investigate some of the interactions responsible for the multiple component RTP emission. The experiments performed also proved the suitability of the phases prepared using non-ionic resins, for the quantification of molecular oxygen by RTP-quenching measurements. Moreover, the solid phases with anion-exchanger resins showed good potential for the analytical sensing of humidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.