Abstract

In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.