Abstract

We present a method for solving the first-order field equations in a post-Newtonian (PN) expansion. Our calculations generalize work of Bini and Damour and subsequently Kavanagh et al., to consider eccentric orbits on a Schwarzschild background. We derive expressions for the retarded metric perturbation at the location of the particle for all $\ell$-modes. We find that, despite first appearances, the Regge-Wheeler gauge metric perturbation is $C^0$ at the particle for all $\ell$. As a first use of our solutions, we compute the gauge-invariant quantity $\langle U \rangle$ through 4PN while simultaneously expanding in eccentricity through $e^{10}$. By anticipating the $e\to 1$ singular behavior at each PN order, we greatly improve the accuracy of our results for large $e$. We use $\langle U \rangle$ to find 4PN contributions to the effective one body potential $\hat Q$ through $e^{10}$ and at linear order in the mass-ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.