Abstract

The probability hypothesis density (PHD) recursion propagates the posterior intensity of the random finite set (RFS) of targets in time. The cardinalized PHD (CPHD) recursion is a generalization of the PHD recursion, which jointly propagates the posterior intensity and the posterior cardinality distribution. In general, the CPHD recursion is computationally intractable. This paper proposes a closed-form solution to the CPHD recursion under linear Gaussian assumptions on the target dynamics and birth process. Based on this solution, an effective multitarget tracking algorithm is developed. Extensions of the proposed closed-form recursion to accommodate nonlinear models are also given using linearization and unscented transform techniques. The proposed CPHD implementations not only sidestep the need to perform data association found in traditional methods, but also dramatically improve the accuracy of individual state estimates as well as the variance of the estimated number of targets when compared to the standard PHD filter. Our implementations only have a cubic complexity, but simulations suggest favorable performance compared to the standard Joint Probabilistic Data Association (JPDA) filter which has a nonpolynomial complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.